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Abstract-The emergence of multi-core systems has given rise 

to the need of developing multi-threaded applications. To 

ensure synchronization between concurrent operations lock 

based mechanisms are used. Nevertheless, conventional lock 

based synchronization techniques lead to problems such as 

deadlocks, priority inversion and convoying. Moreover, lock 

based synchronization mechanisms are not scalable. 

Transactional memory (TM) is being considered as an 

effective alternative to conventional lock based 

synchronization mechanisms. In the past decade, different 

methods to implement TM systems have been proposed. 

These approaches are either software-only, hardware-only 

or hybrid approaches. In this paper, we present a review of 

the different design approaches to implement TM systems. 

We also present a taxonomy that classifies these design 

approaches and discuss the common issues that need to be 

considered while implementing a TM system. In addition we 

present taxonomy for TM in embedded systems. 
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I. INTRODUCTION 

Advances in semiconductor technology were initially 
responsible for improved processor performance. 
However, practical limits on power dissipation restrict the 
increase in clock speed. The current decade marks the 
transition from sequential to parallel computation. With 
the advent of multi-core systems multi-threaded 
applications are being developed. To ensure that the 
concurrent operations do not interfere, synchronization 
mechanisms such as locking are essential. For each data 
structure, a lock indicates whether the structure is in use or 
not. Threads cooperate by acquiring the lock before 
accessing the corresponding data. 

Nevertheless, conventional synchronization techniques 
based on locks have substantial limitations. Coarse grained 
locks do not scale while fine-grained locks increases lock 
overhead. In particular, they introduce problems such as 
deadlocks, priority inversion and convoying. Programs 
written using other synchronization constructs such as 
semaphores and monitors are difficult to design, construct, 
maintain and often do not perform well.  

Transactional memory [23] is a new programming 
construct that provides a high-level abstraction for writing 
parallel programs. Transactional memory tries to reduce 
the difficulty of writing concurrent programs by providing 
atomic and isolated execution of code. TM shifts the 
burden of correct synchronization from the programmer to 
TM system. Transactional Memory borrows concepts from 
the domain of database systems. Similar to database 
transactions, TM has Atomicity, Consistency, and 
Isolation (ACI) properties: Atomicity guarantees that 
transactions execute as an indivisible unit and either 
commit or abort as a whole, Consistency guarantees that 
transactions follow the same order during the whole 
process, and Isolation guarantees that each transaction‟s 
operations are isolated to other transactions. 

The proposed Transactional Memory approaches can 
be broadly classified as Hardware (HTM) 
[18][19][12][20][21][23][25][26][28] and Software 
(STM)[10][11][13][15][16][29][30][31][33][34][35][36].
Hardware approach exhibits high performance and strong 
atomicity but has shortcomings such as lack of support for 
unbounded transactions, architectural limitations, less 
flexibility and design complexity. In order to overcome 
the problem of limited hardware resources and to support 
unbounded transactions most implementations employ 
some virtualization techniques. Software implementations 
are cost-effective and flexible than HTMs but are slower 
as compared to HTMs. Moreover, poor performance and 
weak atomicity are two serious concerns while 
implementing TM totally in software. Thus, each of these 
approaches has its own advantages as well as limitations. 
In order to avail the benefits of the two, hybrid 
implementations have been proposed 
[1][2][3][4][5][6][7][8].The most notable proposal Hybrid 
Transactional memory (HyTM) by Damron et al. [2] 
exploits HTM support to achieve high performance and 
scalability while using software to support transactions 
that exceed hardware limits. 

Recently TM implementations for embedded multi-
core systems are being proposed considering energy 
consumption and complexity as a major design aspects 
[36][37][38][39][40]. These implementations are mostly 
hardware-only implementations.  
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In this paper we present a review of the different 
implementations and also provide taxonomy for TM 
systems. Chen Fu et al. [46] have proposed a taxonomy 
but limited to HTM. We extend this to include all types of 
TM along with Embedded-TM. We also give a brief 
introduction to other synchronization apart from TM and 
locks. The rest of the paper is organized as follows: 
section II mentions the proposed taxonomy, section III 
mentions other synchronization approaches apart from 
locks and TM such as TLRW [41]. In this section we also 
discuss an investigation of interaction of TM and locks 
based codes [43]. Section IV presents the observations 
and conclusions. 

II. TAXONOMY 

We take a top-down approach to classify TM systems that 
deal with issues of transaction conflicts, support for 
virtualization, isolation and nesting. We also classify the 
systems on basis of whether modifications are performed 
at the processor level, in the operating system or only in 
software. 

A. Taxonomy based on conflicts 

Conflicts occur when two or more threads access the same 
resource. We classify first and foremost on basis of 
conflict detection.  

Conflict detection method can be lazy or eager. 
In eager conflict detection the conflicts are resolved as 
soon as thread seeks data that conflicts with one or more 
other transactions. On the other hand, lazy mechanism 
executes a transaction optimistically assuming no 
conflicts. Conflicts are resolved when a transaction 
conflicting with other transaction seeks to commit. 
Conflict detection is usually combined with version 
management parameter.  

 Version management refers to how to store new 
and old data. The existing proposals can be classified on 
basis of version management as eager and lazy. Lazy 
version management leaves old values in the memory 
while new values are stored elsewhere and written back 
after a transaction executes successfully. Although this 
makes aborts faster, the more common case of transaction 
commit shows degradation in performance. On the 
contrary, in eager version management updates are carried 
out “in place” while old values are stored elsewhere (in a 
log). Naturally, commits are faster and aborts involve 
considerable overhead of writing data back to the 
memory. On combining conflict detection and version 
management, we have four categories viz. Eager-eager, 
eager-lazy, lazy-eager, lazy-lazy. No proposals attempted 
to combine eager version management and lazy conflict 
detection possibly due to the semantic problem of eagerly 
updating data while postponing conflict detection until 
commit. Recently, Anurag Negi et.al. [47][48] have 
proposed a HTM with lazy versioning and eager/lazy 
conflict resolution method.  

The next question arises as to what to do when a 
conflict is detected. The implementation may either stall a 
transaction (risk of deadlock) or abort it (risking a live 
lock) or leave the decision to a software contention 
manager. Further the TM system has to take a decision 
regarding which transaction to abort. The victim can be 
chosen based on various conflict resolution policies 
briefly discussed as follows. 

i) Time-stamp: Transactions are assigned a 
timestamp using the real time clock on begin. When a 
conflict is detected, the time-stamps of the conflicting 
transactions are compared. Logically later transactions are 
forced to either stall or abort. Using this scheme, the oldest 
transaction gets the highest priority. 

 ii) Write-set size: Write-set size is the number of 
blocks (depending on granularity) modified by a 
transaction. This scheme suggests aborting a transaction 
that has modified comparatively less number of locks 
involves is cost-effective.  

iii) Polite: It uses an exponential back-off strategy 
to resolve the conflict. The transaction is aborted after a 
specific number of unsuccessful attempts to commit.   

iv)  Polka: It uses a back-off strategy for conflict 
resolution. The back-off interval is proportional to the 
difference in priorities between the conflicting 
transactions. 
Most implementations choose the victim depending on its 
age (time-stamp) or its write-set size. Therefore we 
include only these two policies in our tree structure, 
Figure 4. However, it may be noted that proposals may 
use others mentioned above as well. Figure 1 outlines a 
taxonomy based on parameters described above.  

 
Figure 1: Taxonomy based on conflicts 

We now present case studies each representing one of the 
paths in the tree structure in Figure 4 constructed on basis 
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of the taxonomy. In addition, we also represent some 
other proposals in the tree structure. Some proposals 
specify only some parameters described above and leave 
the rest flexible for system design. 

Log-TM [20]: Eager-Eager: It advocates use of 
the eager-eager conflict detection-version management 
scheme. Log-TM stores old data values in a per-thread log 
in virtual memory while new values are directly written 
into the memory locations. To abort, Log-TM has to write 
back old values to their addresses by referring the log 
making the process slower. As with the eager versioning 
scheme, commits are faster and aborts slower. It enables 
eager conflict detection by using directory based MOESI 
cache coherence protocol. The coherence protocol is 
extended to handle even the blocks that are evicted from 
the cache. On detection of a conflict, Log-TM either stalls 
or aborts one of the transactions. Log-TM makes aborts 
less common by using stalls to resolve conflicting 
transactions when deadlock is not possible. In cases where 
a transaction could lead to a deadlock, it traps to a 
software conflict handler. Transactions are ordered using 
the time-stamp method where logically earlier 
transactions are forced to abort or wait. 

HyTM [2]: Lazy-Lazy: HyTM uses best effort 
hardware transactional memory. It first tries to execute 
transaction in hardware, if hardware resources exhausted 
then it executes the transaction in STM. This approach 
uses Lazy-Lazy conflict detection and version 
management scheme.  A contention manager is used to 
resolve conflicts. The decision regarding whether to stall 
or abort transaction, which transaction to abort is left to 
the manager.  The victim transaction is chosen on basis of 
the timestamp method described above. It supports nested 
transactions with flattening, gives weak isolation for 
transactional blocks. 

Dynamic Software Transactional memory 
(DSTM) [9]: Eager-Lazy: Dynamic Software TM was 
proposed to support dynamic-sized data structures which 
create transactions dynamically.  DSTM a low-level (API) 
application programming interface uses C++ and Java 
API„s to program dynamic data structures.  DSTM 
exploits obstruction free mechanism for synchronizing 
shared memory. It is an example which employs lazy 
version management in combination with eager conflict 
management policy.  DSTM uses an explicit contention 
manager to resolve conflicts. The policy to choose the 
victim also depends on the contention manager. It 
supports flattened nested transactions and also provides 
weak isolation with object-based granularity.  

EazyHTM [27]: Eager-Lazy: EazyHTM employs 
lazy version management in combination with eager 
conflict detection policy. It enables eager conflict 
detection by using directory based MOESI cache 
coherence protocol. By making small hardware 
modifications in the protocol the EazyHTM detects 
conflicts eagerly and resolves them lazily by either 
aborting or stalling the conflicting transaction to avoid 

cascading waits. EazyHTM proposal leads to faster 
commits and aborts and allows non-conflicting 
transactions to commit in parallel. It provides strong 
isolation for the transactional blocks. Thus it provides 
remarkable performance improvements compared to the 
prior HTM designs. 

B. Taxonomy  based on modifications 

While implementing a TM system, changes may be made 
to one or both of the processor local hierarchy and the 
operating system. Many implementations also use some 
software support along with TM modified processor. 
There also exist some proposals implementing TM 
entirely in software without any support from the 
underlying system. The proposals can be sorted as per the 
regions defined by a Venn diagram as shown in Figure 2. 
 

 
Figure 2: Classification based on modifications 

Proposals lying in each region of the Venn diagram have 
some advantages and drawbacks. Table 1 highlights the 
advantages and drawbacks of the modifications. We now 
present case studies each describing modifications at 
different levels. 

Unbounded transactional memory [18]: This 

approach requires modifications to both the processor 

chip and the memory subsystem. The processor is 

modified to support unbounded transactions. New 

instructions are added to the instruction set architecture. 

Modification in form of „S‟ (saved) bit is required for 

handling rollback. This proposal uses snapshot for register 

renaming table instead of physical registers. This ensures 

that before transaction commits, data in the physical 

registers is not reused.  „S‟ bit vector in the snapshot 

tracks the physical structure, maintains register reserved 

list to avoid overwriting of transactions. For committed 

transaction value of „S‟ bit vector is cleared and data form 

register reserved list is copied to register free list. For 

aborted transaction contents of the renaming table are 

restored. 

McRT-STM [14]: McRT is basically a software 

transactional memory build within a multi-core run time 

(McRT) to support C/C++ applications. It is the first 

algorithm for C/C++ and other applications that use 

explicit memory management. In McRT synchronization 
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is achieved by using a two-phased locking protocol that 

permits multiple concurrent transactions to read and only 

one transaction to modify. In order to reduce conflicts, 

McRT employs a scheduler that performs pre-emption to 

prevent inactive transactions from blocking other active 

TABLE 1: Advantages and drawbacks 

Modification in Advantages Drawbacks 

Processor local 
hierarchy only 

[18][19][12] 
[20][21][23] 
[24][26][28] 

- high 
performance 

- high atomicity 
 

- high implementation and 
verification cost 

- no support for context 
switches 

- limit on transaction size 

- impose constraints on 
programmer 

Software only 

[10][11][13] 
[15][16][29] 
[30][31][33] 
[34][35] 

- no hardware 
support needed 

- flexibility 

- no hardware 
cost 

- high overheads 

- slow 

- lower execution speed as 
compared to hardware 
only proposals 

Processor 
hierarchy and 
Software 

[1][2][3][4] 
[5][6][7][8] 

- combines 
benefits of 
hardware and 
software 
support 

- can exploit best 
effort hardware 
support to boost 
performance 

- extends execution time of 
large transactions 

- most implementations 
rely completely on 
software exception 
handling. 

Processor and OS 
[25 ] 

- Supports 
Unbounded 
transaction  
sizes 

- flexible 

- high 
performance 
and strong 
atomicity 

- memory overhead as 
compared to hardware 
proposals 

Software and OS 
[ 44 ] 

- improved 
transaction 
throughput as 
compared to 
only   software 

- kernel level 
scheduling 
support 
significantly 
reduces number 
of aborts 

- lower execution speed as 
compared to only 
hardware proposals 

All [32  ] - Shrinks the 
functionality 
gap between 
hardware TM 
systems and 
software ones 

- does not rely 
completely on 
user mode 
exception 
handling as in 
hybrid systems 

- lower execution speed as 
compared to only 
hardware proposals 

transactions. The former STM were based on non-

blocking design that used complex memory management 

schemes like the hazardous pointers. In contrast McRT 

uses a shared memory allocator. By employing this 

method the numbers of aborts have been reduced and 

memory management has been simplified. 
Hybrid transactional memory [1]: This scheme 

lies in between only hardware and only software 
approaches. It uses software mechanism only if the 
transaction exceeds hardware resource limitations. 
Implementing HyTM requires some modifications at the 
processor level. Hardware for transactional memory 
includes a transactional state table and a transactional 
buffer. The transactional state table provides an entry for 
each hardware context on the processor to track the mode 
of transactional execution of that hardware context. Each 
entry in the transactional buffer holds both (old and new) 
values, bit vectors to indicate which hardware contexts 
have speculatively read or written the line, and the 
conventional tag and state information.  Apart from that, 
additional bits are provided for each line for conflict 
detection. The software scheme for handling transactions 
that exceed hardware limits is based on DSTM [9]. This 
approach combines the performance benefits of a pure 
hardware scheme with the flexibility of a pure software 
scheme. 
  HTMOS (Hardware Transactional Memory with 

Operating System Support) [25]: HTMOS is a 

modification to the conventional Hardware Transactional 

Memory (HTM). This implementation suggests changes 

in OS virtual memory mechanism and architecture instead 

of the cache subsystem to support allocation and 

manipulation of memory space for bookkeeping. 

Performance improvement is achieved by introducing 

some new data structures and modifying the existing ones 

at the OS level. For example the Page Table in the classic 

OS implementation is extended to be Virtual Page Table 

(VPT), which holds addresses of the secondary copy of 

the pages. The various changes made result into making 

the HTMOS fast, simple like HTMs and flexible like 

STMs. It supports unbounded transactions, reduces read-

write overhead of transactions, is fast like other HTMs 

and provides strong atomicity.The drawback of this 

implementation is that it requires a lot of memory for 

maintaining page information. 

Scheduling Support for Transactional Memory 

Contention Management [44]: TM implementations have 

traditionally used user-level software contention managers 

to resolve conflicts. However, these contention managers 

do not ensure reasonable performance under high 

workloads. This algorithm uses a shared memory segment 

to provide lightweight communication between the user-

level STM library and the kernel-level scheduler. The 

shared memory region contains a table of consisting of 

elements equal in number to the maximum number of 

threads. Each element is a structure that stores STM 

information for a given thread. The OS thread structure is 

augmented with a pointer to the respective entry in the 
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table. Child threads are subsequently linked to the next 

available entry as part of their STM initialization process. 

Thus the interaction with kernel is simplified as the 

application simply fills in data in the shared structure. 

There is no direct user-kernel interaction. This approach 

has been implemented Linux and Solaris and has proved 

to be effective in reducing the number of aborts and 

retaining throughput even under high contention.  

Extending Hardware Transactional Memory to 

Support, Non-bus, Waiting and Non-transactional Actions 

[32]: This proposal demonstrates software ideas adapted 

to work in hardware system with some support from the 

OS. This paper attempts to shrink the functionality gap 

between software transactional memory systems and 

hardware ones. The paper focuses on the Virtual 

Transactional Memory (VTM) [19], which is a combined 

hardware-software implementation. Much of the software 

stack associated with VTM is implemented as part of the 

Linux kernel in this proposal. The VTM 

hardware/software interface contains two main data 

structures - The global transaction state segment (GTSS) 

that holds the overflow count and a pointer to the XADT 

structure discussed in [19]. The kernel allocates one 

GTSS per address space and local transaction state 

segment (LTSS) per thread. Pointers to these data 

structures are written into separate registers on a context 

switch. Most kernel modifications are encountered only 

by the transacting instructions and thus the impact on 

other instructions is minimal.  

C. Taxonomy based on other parameters 

Several other parameters can be taken into consideration 
while designing a TM system. These are described as 
follows.   
Nesting: Transactional nesting allows a transaction to 
start inside another. There are three basic mechanisms that 
support nesting viz. Flattening, open and closed nesting.  

i) Flatten: The flattening model includes all 
nested transactions in the outmost transaction. All 
transactions share a common read and write-set. On 
completion of the inner transaction, the outer transaction 
resumes execution. However, conflict with an inner 
transaction forces the outer ones to abort as well. 

ii) Closed nesting: Closed nesting allows partial 
abort i.e. only the conflicting inner transaction is aborted 
and re-executed. The nested transactions have their own 
read and write sets which merge with the sets of the outer 
level on commit. On abort, the innermost conflicting 
transaction rolls back to its original states but not to the 
top level.  

iii) Open nesting: When an open nested 
transaction commits, its read-write sets are visible to all 
other transactions. The new values of data can be 
accessed without having to wait for the outer transaction 
to commit.  Rollback and commit is thus independent of 
the outer parent transactions.  

Isolation or atomicity: Isolation can be strong or weak. 
When non-committed updates cannot be read from the 
outside of a transaction, isolation is said to be strong. 
Strong isolation is easier to implement in hardware using 
cache coherence protocols to track reads and writes. Most 
HTM proposals provide strong isolation. When non-
transactional code can read non-committed updates, 
isolation is said to be weak.  Shared data may be accessed 
from outside a transaction that was supposed to be 
executed atomically. Weak isolation model is easier to 
implement than strong isolation one but provides a less 
intuitive model to the programmer. 
Memory model: TM system designers have chosen either 
the shared memory or the message passing model.   

i) Shared memory: In shared memory systems 
communication takes place implicitly through load and 
store instructions to a global address space. 
Synchronization and communication are distinct in this 
model. Shared memory is a simple programming model 
but it has a complex hardware configurations. 

ii) Message passing: Message passing system is 
like an interrupt driven system where communication 
takes place explicitly through messages between 
processors. Synchronization is achieved through sending 
and receiving of messages between processors. Message 
passing makes software design difficult. 

As seen, both these model have their drawbacks. 
An ideal model would be the one which combines the 
benefits of both. It should present a shared model to 
programmer while at the same time take advantage of 
inherent synchronization and latency-tolerance of 
message passing protocols. Such a model has been 
proposed by TCC [17]. With immense inter-processor 
bandwidth available in new systems, it is now possible to 
exploit it and implement such a model. 
Granularity: It indicates the size of the read/write sets 
that are tracked for conflict detection. Conflict detection is 
usually done at the word granularity, cache line 
granularity, or object granularity. 

i) Word granularity: Using word granularity 
prevents false sharing but introduces higher space and 
time overhead.   

ii) Cache line granularity: It is the preferred 
granularity for hybrid and hardware systems. However it 
poses a risk of false sharing. 

iii) Object granularity: It is commonly seen in 
software implementations as it is convenient for the 
programmer. However, object granularity may also lead 
to false sharing. 
Table 2 shows proposals classified as per above 
parameters. 

D. Classification of Transactional memory based on 

energy consumption 

Transitional memory proposals discussed so far have 
chiefly considered the aspects of throughput efficiency 
and ease of programming for evaluating the system. 
Energy efficiency for evaluating TM on embedded 

Shweta Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 766-775

770



 

 

systems was first considered by Ferri [40] .Unlike general 
purpose systems, energy consumption parameter is of 
utmost importance in embedded systems. We review 
different approaches for implementing TM on embedded 
systems in this paper. We consider aspects of energy 
efficient TM design [40] such as memory hierarchy, 
contention management and shutdown mode. Figure 3 
shows embedded-TM classification.  
Memory hierarchy: 
There are three ways in which different cache structures 
can be used in the memory hierarchy. 

i) L1 with Transactional Cache (TC): As the 
basic architecture we consider Embedded-TM [36] which 
stores non-transactional data in a comparatively larger L1 
cache and transactional data is stored in smaller, fully 
associative TC. However, the transactional cache 
consumes a lot of energy.  

 

 
 

Figure 3: Taxonomy for embedded TM system 

Another drawback of this architecture is that for larger 
transaction which cannot be accommodated, it continues 
with a much less efficient serial mode execution. 

ii) Only L1: To address the limitations associated with 
TC model there is another model proposed in which both 
transactional and non-transactional data is kept in the L1 
cache. This design eliminates the need of maintaining 
coherency between the caches on the same level. As L1 is 
much larger as compared to TC the possibility of 
transactional overflow is considerably reduced. However, 
this design is still limited by resource constraints. 

iii) L1 with Victim Cache (VC): Use of victim cache 
between L1 and main memory overcomes drawbacks of 
the other two architectures. The data primarily resides in 
the L1 cache. The victim cache is used only when a 
transactional entry is evicted from the L1 cache. In this 
case as well, the caches are accessed sequentially, first the 
L1 cache and then the VC after L1 lookup fails. Here VC 
can be designed to be smaller than the TC used in the base 
Embedded-TM architecture [36]. Since L1 is backed up 
with VC there is enough space for transactions making 
overflows less common. As VC is used only when L1 
cache cannot support the transactions, it is favorable to 

keep VC powered down until needed. The L1+VC scheme 
is better than L1+TC scheme. [36]   
Conflict detection and resolution: 

 When a transaction detects conflict with another, 
one of them needs to abort. The general Back-off strategy 
used in other TM proposals is inefficient in terms of 
energy. For embedded systems, we consider following 
conflict resolution schemes- 

i) Eager: This method suggests that a data 
conflict is detected as soon as a transaction tries to access 
the modified line in shared memory. This approach is 
advantageous because it does not require any radical 
changes in the original cache coherence protocol. It 
performs well when the data conflict rate is low but fails to 
do so when the data conflicts occur at a higher rate.    

ii) Lazy: This is a more complex alternative for 
conflict resolution, useful in the higher data conflict rate 
environment. The conflicts are detected as before and 
instead of resolving them at the time they are detected, 
they are left unresolved until the commit time. Lazy 
resolution implies substantial changes to the platform and 
the architecture and sometimes might penalize a low 
conflict transaction but is well suited for high-conflict 
transactions. It improves both performance and energy 
efficiency as compared to the eager scheme. 

iii) Forced serial: It is another approach that is 
feasible for higher data conflict rates. It can be run on top 
of eager or lazy contention management. The system 
reverts to serialized execution if a transaction has been 
aborted more than once. Once the transaction completes, 
the system reverts back to its original conflict resolution 
policy (i.e., eager or lazy).The brute-force approach is 
attractive for its simplicity and wide range of 
effectiveness, and it works moderately well most of the 
time. 
Shutdown: The shutdown mode can be normal or 
aggressive. 
 Aggressive shutdown:  In this mode, the modified lines 
are written back to the memory hierarchy on transaction 
commit. This allows the transactional cache which is not 
in use to be powered down leading to efficient energy 
usage. It can be implemented in two ways. 

i) L1 WB: Here the modified lines are written 
back only to L1 cache before TC is powered down. 

ii) L2 WB: Here the modified lines are written 
back to L1 and L2 cache before TC is powered down. 

III. OTHER APPROACHES 

Though the transactional memory approach is fetching a 

lot of attention in the parallel computing domain, there are 

few drawbacks found, especially for the Software 

Transactional Memory approach. In the following section 

we discuss a few approaches that talk about alternatives to 

pure Transactional Memory. 

Adaptive Locks: Combining Transactions and 

Locks for Efficient Concurrency. This is an approach 

which considers the combination of both transactions and 
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locks in order to achieve the best performance in terms of 

synchronization. The programmer specifies the critical 

section. Using an adaptive locking technique, the decision 

whether to execute the critical section using transactions 

or with holding mutex locks is taken. According to the 

experiments performed on various benchmarks by Usui  

et al. [45], adaptive locks consistently outperform either 

of its two components (locks & transactions) used 

individually. It is observed that this implementation 

provides speedups and simplifies the programming model. 
TLRW: The new algorithm TLRW [41] is based 

on byte locks for single-chip multi-core systems. The 
design of TLRW is simple and streamlined as compared 
to the lock free STM systems and delivers scalable 
performance. Read-write lock-based STMs are a viable 
approach for single chip multi-core systems with strong 
progress properties and support for irrevocable 
transactions but for two chip multi-core systems a lock-
free STM is a better approach. 

Haris Volos et. al. [42] discusses behaviour of 
locks and TM when used together in a code based on five 
pathologies viz. blocking, deadlocks, livelocks, early 
release and invisible locking. The proposed method uses a 
modified lock implementation and extension of conflict 
detection policy of a HTM. The approach is a transaction-
safe locks approach where a lock is accessed both within 
and outside a transaction. The paper concludes that the 
pathologies occur because of any of the following:  
(1) Transaction conflict resolution is un-aware of locks 
(2) Lock variables may be locked both at the memory 
level (by TM) and logical level (by locks)  
(3) System does not respect lock semantics during abort 
of commit operations.  
 Polina Dudnik et al. [43] discuss how transactional 
memory implementations do not consider conditional 
variables mechanism in their design. They propose 
alternative methods to implement conditional variable so 
as to suit TM.  

IV. CONCLUSIONS 

In this paper we present taxonomy for TM 
systems based on parameters like conflict detection, 
version management, energy, memory model and 
isolation. We also give a brief introduction to other 
approaches apart from locks and TM.  

We observe that hardware implementations 
adopt eager conflict detection-eager version management 
approach. On the other hand, software approaches prefer 
eager conflict detection and lazy or eager version 
management. 

Secondly, most hardware proposals choose the 
victim based on timestamp or write-set resolution policy. 
An equally large number resort to a software contention 
manager, most of them being software proposals. 

As seen in the Venn diagram, comparatively few 
proposals have implemented TM with support from   
Operating System.  Future implementations are likely to 

use Operating System support considering the advantages 
it offers. 

From Table 2, we see that Hardware proposals 
prefer cache-line granularity while software proposals 
prefer object granularity. Most proposals prefer a shared 
memory model. This is probably due to insufficient intra-
processor bandwidth. However as newer systems promise 
higher bandwidth, proposals which use a combination of 
both such as TCC [17], LogTM [20], EazyHTM [27], 
TTM [30] can be used in future. 

We conclude that for implementing TM in 
embedded system we can have a number of different 
approaches. L1 with victim cache is beneficial in the 
scenario where there are memory constraints. Eager and 
Lazy conflict detection policies are used in different data 
conflict rates. In most of the cases aggressive shutdown 
mode is used for energy efficiency [36]. 

 

 

Figure 4: Classification of proposals based on conflict related parameters 
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Table 2: Classification based on other approaches 

 

Scheme Isolation Nesting Granularity 
Memory 

model 
DSTM [9] Weak Flattened Object Shared 

ASTM [10] Weak Not supported Object Shared 

McRT STM [14] Weak Closed Cache-line or object  Shared 

TL2 [11] Weak Not supported Word, object Shared 

DracoSTM [16] Weak Closed Object Shared 

Strongly Atomic 
STM [12] 

Strong Closed Object Shared 

Elastic 

Transactions [15] 
Weak Supported Word Shared 

Swiss TM [13] Weak Not supported Word Shared 

HyTM [2] Weak Flattened Word, Cacheline Shared 

Hybrid TM [1] Weak Flattened Object, Cacheline Shared 

PhTM [6] 
Weak 

&Strong 

Sometimes 

supports 
Word, Cacheline Shared 

NZTM [5] Weak Not supported Object, Cacheline Shared 

SigTM [4] Strong Supported Word, Cacheline 
Message 
passing 

UFO hybrid TM 

[7] 
Strong Flattened Cacheline Shared 

SpHT [8] Strong Open & Closed Cacheline Shared 

LogTM_SE [22] Strong Open & Closed Block, Page Shared 

OneTM [21] Strong Flattened Cacheline Shared 

TCC [17] Strong Flattened Object, Cacheline 

Shared and 

message 
passing 

TokenTM [28] Strong - Block Shared  

LTM [18] Strong Flattened Cacheline Shared 

UTM [18] Storng Flattened Cacheline Shared 

VTM [19] Strong Flattened Cacheline Shared 

LogTM [20] Strong Flattened Word, Cacheline 

Shared and 

message 

passing 

HMTM [23] Strong - Cacheline Shared 

HTMOS [25] Weak flattened Cacheline Shared 

EazyHTM [27] Strong Not specified Cacheline 

Shared and 

message 
passing 

TTM [30] Strong flattened Word, Cacheline 

Shared and 

Message 

passing 
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